Solution of UyHiP 2017 May

Hanlin Ren

May 3, 2017

1 Answer

Let P(n) be the statement : "it's possible to find an abelian group (G, +) of size n and bijections $A, B, C : G \to G$ such that $\forall x \in G, A(x) + B(x) = C(x)$ ". Then $n \not\equiv 2 \pmod{4} \implies P(n)$.

On the other hand, when $n \equiv 2 \pmod{4}$, we can't find group G and bijections A, B, C that satisfies the condition, even if G can be non-abelian. Therefore the answer for part 1 and part 2 are both $n \not\equiv 2 \pmod{4}$.

2 Proof for $n \not\equiv 2 \pmod{4}$ case

Lemma 1. $n \equiv 1 \pmod{2} \implies P(n)$.

Proof. Let $G = (\mathbb{Z}/n\mathbb{Z}, +)$, since n is odd, $x \mapsto (x + x) \mod n$ is a bijection. We let A(x) = B(x) = x, $C(x) = (x + x) \mod n$.

Lemma 2. P(4).

Proof. Let G be the set of all binary strings of length 2, + is the xor operation, and A, B, C are defined as follows :

x =	00	01	10	11
A(x) =	00	01	10	11
B(x) =	00	11	01	10
C(x) =	00	10	11	01

It's easy to check A, B, C are all bijections and $\forall x \in G, A(x) + B(x) = C(x)$.

Lemma 3. P(8).

Proof. Let G be the set of all binary strings of length 3, + is the xor operation, and A, B, C are defined as follows:

x =	000	001	010	011	100	101	110	111
A(x) =	000	001	010	011	100	101	110	111
B(x) =	000	111	101	010	110	001	011	100
C(x) =	000	110	111	001	010	100	101	011

It's easy to check A, B, C are all bijections and $\forall x \in G, A(x) + B(x) = C(x)$.

Lemma 4. $\forall n_1, n_2 \in \mathbb{Z}, P(n_1) \land P(n_2) \implies P(n_1n_2).$

Proof. Suppose $P(n_1) \wedge P(n_2)$. Then there exists abelian groups $(G_1, +_1), (G_2, +_2)$ and bijections $A_1, B_1, C_1 : G_1 \to G_1$ and $A_2, B_2, C_2 : G_2 \to G_2$ that $|G_1| = n_1, |G_2| = n_2, \forall x \in G_1, A_1(x) +_1 B_1(x) = C_1(x)$, and $\forall x \in G_2, A_2(x) +_2 B_2(x) = C_2(x)$.

Let G be the direct sum $G_1 \oplus G_2$, then G is abelian. Let $A(x, y) = (A_1(x), A_2(y)), B(x, y) = (B_1(x), B_2(y)), C(x, y) = (C_1(x), C_2(y))$. It's easy to check that A, B, C are bijections from G to itself, and $\forall x \in G_1, y \in G_2, A(x, y) + B(x, y) = (A_1(x) + B_1(x), A_2(y) + B_2(y)) = (C_1(x), C_2(y)) = C(x, y)$. Since $|G| = n_1 n_2, P(n_1 n_2)$ is true.

Theorem 5. $n \not\equiv 2 \pmod{4} \implies P(n)$.

Proof. From lemma 1, we know that $n \not\equiv 1 \pmod{2} \implies P(n)$. Now we concentrate on the case that $n \equiv 0 \pmod{4}$. Let $n = 2^s(2t+1)$, where $s, t \in \mathbb{Z}$. Since $n \equiv 0 \pmod{4}$, $s \geq 2$. If $s \equiv 0 \pmod{2}$, we write $n = 4^{s/2}(2t+1)$; otherwise $s \geq 3$ and we can write $n = 4^{(s-3)/2} \cdot 8 \cdot (2t+1)$. Since P(4), P(8), P(2t+1), we know that P(n) is true.

3 Proof for $n \equiv 2 \pmod{4}$ case

Now we consider $n \equiv 2 \pmod{4}$. We show that even if the restriction that G is abelian is removed, no group G and bijections A, B, C satisfies $\forall x \in G, A(x)B(x) = C(x)$.

Note : in the non-abelian case, operator * is omitted.

Lemma 6. Suppose G is a group, and |G| = n = 4k + 2 for some $k \in \mathbb{Z}$. Then G has a subgroup of size 2k + 1.

Proof. By Cayley's theorem, G is isomorphic to some subgroup $G' \leq S_n$. So we only need to prove the theorem for G'. Moreover, suppose the group isomorphic function is f, then $\forall g, h \in G, f(g)$, which is some element in G', maps h to gh.

Since $2 \mid n$, there is an element $u \in G$ that o(u) = 2, where o(x) is the order of x. There are $\frac{n}{o(u)}$ cycles in the permutation f(u), each of length 2, so f(u) is an odd permutation. Since there is an odd permutation in G', there are $\frac{|G'|}{2}$ odd permutations in G', and the even permutations in G' forms a subgroup of size 2k + 1.

Theorem 7. When $n \equiv 2 \pmod{4}$, it's impossible to find a group G of size n and three bijections $A, B, C : G \to G$ such that $\forall x \in G, A(x)B(x) = C(x)$.

Proof. Suppose there exists G, A, B, C as the theorem states.

Consider the subgroup H of G which has size $\frac{n}{2}$. For an element x, we define its characteristic function

 $\chi(x) = \begin{cases} 0 & x \in H \\ 1 & x \notin H \end{cases}$ By the argument above, there exists some element $u \in G$ that o(u) = 2 and $u \notin H$.

Therefore $G = H \cup uH = H \cup Hu$.

 $\forall x,y \in G:$

- If $x, y \in H$, then obviously $xy \in H$.
- If $x \in H, y \notin H$, then $\exists v \in H, y = vu$. Therefore $xy = xvu \in Hu$, so $xy \notin H$.
- If $x \notin H, y \in H$, then $\exists v \in H, x = uv$. Therefore $xy = uvy \in uH$, so $xy \notin H$.
- If $x, y \notin H$, then $\exists v, w \in H$, x = vu, y = uw. Therefore $xy = vu^2w = vw \in H$.

So we proved that $\forall x, y \in G$, $\chi(x) + \chi(y) \equiv \chi(xy) \pmod{2}$.

Let's consider $S = \sum_{x \in G} \chi(A(x)) + \chi(B(x)) + \chi(C(x))$. Since $A(x)B(x) = C(x), \chi(A(x)) + \chi(B(x)) + \chi(C(x)) \equiv 0 \pmod{2}$, so S is an even number. However $S = 3 \sum_{x \in G} \chi(x) = 3(|G| - |H|) = \frac{3n}{2}$ is odd. We obtained a contradiction, thus no G, A, B, C satisfying the conditions exist.