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Note : I used python programs to find the pattern(though the proof is my original). Please add me to
the solvers list only if you think using programs is legal.
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by induction of n.
When n = 0, LHS = 1

j = RHS.
Suppose for all j > 0, equation
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holds.
Then,
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That is, if the equation is right for n− 1, it’s also right for n.
Q.E.D.
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