r_64
分类
最新评论
最新留言
链接
RSS
功能
公告
计数器
111560
抽代试卷上的一个题
设$E$为$F$的扩域,$K,L$为中间域,$K/F$为代数扩域,
$$S=\{\sum_{i=1}^na_ib_i:n<\infty,a_i\in K,b_i\in L\}$$
求证:$S$是$E$的子域。
听说所有symmetric Pascal matrix的行列式都是1
故事背景是这样的。。r_64在进入五道口抖m体校之后,成了脑浆炸裂男孩,发现什么题都做不出了,急需一发数学题来补补脑。。
然后听说symmetric Pascal matrix的行列式都是1。。觉得这个东西的证明好像是个水题。。然后就开始刚
没错这是个水题。。结果脑浆炸裂男孩硬是花了将近一周才证出来。。
军训时在干什么
鸣谢茶园的ztz,akf,wwx和工业工程系的cm
upd 9.26:更了第3题第1,2问(我tm居然会填坑),但是总感觉不太对
一个与组合数、cf 653G(Move By Prime)相关的小定理
有$n$个物品,两两不相同。它们被分成两堆,左边那堆$x$个,右边那堆$n-x$个。从左边那堆拿出$p$个物品,从右边拿出$q$个物品,要求$p>q$。
求证:方案数为$\sum_{i=0}^{x-1}\binom{n}{i}$。
矩阵上的费马小定理?
rt